Monday, March 20, 2017

Lunch Talk: Jay Kaplan: Crowdsourcing Cybersecurity (at Stanford)

Entrepreneur Jay Kaplan, co-founder and CEO of Synack, describes how the idea of creating a cybersecurity service for enterprise businesses by crowdsourcing hackers went from sounding like a long shot to launching as a venture capital-backed startup. Kaplan, previously a senior analyst at the National Security Administration, talks about the virtues of government work and the nuances of “white hat” hacking.

Direct link to Youtube.

tags:network, security, enterprise, control

Friday, March 10, 2017

LunchTalk: Alan Burdick: "Why Time Flies" (at Google)

Alan Burdick is a staff writer and former senior editor at The New Yorker. His most recent book, "Why Time Flies: A Mostly Scientific Investigation," was published in January by Simon & Schuster.

“In his lucid, thoughtful, and beautifully written inquiry about time — what is it, really? Did we invent it, or does it invent us? - Burdick offers nothing less than a new way of reconsidering what it means to be human.” (Hanya Yanagihara, author of A Little Life and The People in the Trees)

Saturday, March 04, 2017

Creative Solution of the Day: the Publication Dilemma

Typically, inventors face a disclosure dilemma: on the one hand, you want to explain your idea to a potential investor or a customer; on the other hand, you don't want to explain it because the idea can be easily stolen. Researchers face a similar dilemma when they consider publishing their results that  might have valuable commercial implications.

In the 1840s, Samuel Colt used the US patent system to overcome the dilemma:
When Samuel Colt, of revolver fame, was trying to sell the U.S. government a system of naval mines, he had to establish that his device was original without giving away its secret. His imaginative solution was to submit the plan to the Patent Office, obtain a confirmation of its originality, and then withdraw the application before the patent was granted, thereby avoiding the publication of the patent specifications.*
The Colt's approach exemplifies a powerful problem-solving technique often called "Separation in Time." According to the principle:
- you perform the useful action first — in the Colt's case: explaining the invention via a patent application — at the time when your potential customer needs to be convinced;
- then you perform a reverse action — withdraw the patent application — at a different time, so that the competition doesn't learn about the idea.

Snapchat provides the most recent example of a successful application of the "Separation in Time" principle along the lines of Samuel Colt's solution. That is, a Snapchat picture or a post is published for a short period of time to a limited group of subscribers; then, the post disappears, so that the information doesn't leak out to the general public. Clearly, the technique can be used for a broad variety of "limited offers."

* Source: Alex Roland, "Secrecy, Technology, and War: Greek Fire and the Defense of Byzantium, 678-1204." 1992.

tags: dilemma, problem, solution, social, separation

Tuesday, February 28, 2017

Lunchtalk: TED - Why humans run the world

A TED talk by Yuval Harari, the author of The Sapiens. From the talk description:
Seventy thousand years ago, our human ancestors were insignificant animals, just minding their own business in a corner of Africa with all the other animals. But now, few would disagree that humans dominate planet Earth; we've spread to every continent, and our actions determine the fate of other animals (and possibly Earth itself). How did we get from there to here? Historian Yuval Noah Harari suggests a surprising reason for the rise of humanity.

Tuesday, February 21, 2017

Stanford CSP, BUS 152 - Session 5, Quiz 1

Background: A major shift in business and technology strategy (aka pivot) seems to be inevitable during the life time of both startups and large companies. The change requires the team to make critical decisions under conditions of uncertainty.

Please listen to the podcast above and answer the following Questions:

1. Why LoudCloud was too early to the market? What were the key decisions for LoudCloud/Opsware in executing a pivot?

2. Did Lytro develop a new technology? Please describe briefly its pivot in terms of the 4Q diagram covered during our Session 4 (Feb 13, 2017). Using the same terms, describe the team's original mistake.

3. (Optional). Imagine that you are the CEO of Twitter. Your user base and revenues are not growing fast enough to compete with Facebook and Snapchat. You have $1B and 2 years to execute a pivot. Describe your key decisions and reasoning behind them.

tags: bus152, quiz, 4q diagram,

Thursday, February 09, 2017

Stanford CSP, BUS 152 - Innovation Timing. Session 4, Quiz 1


Recently, a number of technology companies introduced Augmented Reality headsets that enable users to overlay images from the real world with information generated by a computer, including text, video, graphics, etc. Microsoft HoloLens  is one of the most advanced projects in the field, backed by a major industry player. For example, in a 2016 TED Talk, Alex Kipman demonstrated a head-mounted 3D hologram computer that lets users interact with "magical objects" directly, which eliminates, among other things, the need for displays, keyboards, joysticks, and other typical computer accessories.

Please read the wikipedia article referenced above, watch the TED video, and answer the following questions:

1. Is HoloLens a new technology? Explain.

2. Imagine that it is year 2040. Do you see HoloLens-like devices dominating specific fields of human-computer interaction, e.g.

a) Education (certainly, highly likely, maybe, absolutely not). Explain.
b) Gaming (certainly, highly likely, maybe, absolutely not). Explain.
c) Construction and Industrial Services (certainly, highly likely, maybe, absolutely not). Explain.
d) Healthcare (certainly, highly likely, maybe, absolutely not). Explain.

3. (Optional) In your opinion, what are the top three bottlenecks that may prevent Augmented Reality devices, like HoloLens, from becoming widely popular among consumers during the next 3-5 years? Explain.

Friday, February 03, 2017

Lunch Talk: Superintelligence

A panel discussion with leading AI experts and business leaders about the challenges and opportunities presented by Superintelligence.

Panelists: Bart Selman (Cornell), David Chalmers (NYU), Elon Musk (Tesla, SpaceX), Jaan Tallinn (CSER/FLI), Nick Bostrom (FHI), Ray Kurzweil (Google), Stuart Russell (Berkeley), Sam Harris, Demis Hassabis (DeepMind).

00:00. Yes, No, It’s complicated
03:10. Timescale (Elon at 5:45)
07:07. How to slow it down
14:04. Risks and mitigations (Elon at 32:14)
37:00. Upsides (Elon at 51:18)
52:44. Democracy 2.0
54:14. Bad guys
56:43. Democratising AI (Elon)

lunchtalk, intelligence, problem, system,

Wednesday, February 01, 2017

Stanford CSP, BUS 152 - Innovation Timing. Session 3, Quiz 1

Background: Over the last decade, AI-based technologies succeeded in solving various problems that before were considered impossible to solve using computational methods. In one recent example, Stanford researchers "have trained an algorithm to diagnose skin cancer." In another example, AI bot easily outplayed humans in poker.

The significance of the latter development is that the algorithm successfully handled a problem with imperfect information:
Poker requires reasoning and intelligence that has proven difficult for machines to imitate. It is fundamentally different from checkers, chess, or Go, because an opponent’s hand remains hidden from view during play. In games of “imperfect information,” it is enormously complicated to figure out the ideal strategy given every possible approach your opponent may be taking.

Given that innovation fundamentally involves decision-making with imperfect information, we may want to consider how AI will impact broader innovation processes in our society.

1. Assume that AI decision-making services are widely available. In your opinion, which segments of the society will start using such services first: consumer or enterprise? Explain your reasoning and give approximate calendar time estimates for each segment.

2. Consider Kahneman's System 1 vs System 2 approach to human decision-making (e.g. as discussed during our Session 2). Will a wide adoption of AI services improve or worsen people's ability to use "System 2 thinking"? Explain.

3. In your opinion, will AI-based decision-making services affect the overall timing of innovation diffusion in social systems (see Session 1 lecture notes), e.g. by making S-curves more gradual, more steep, or leave them unchanged? Explain.

Tuesday, January 24, 2017

Stanford CSP. BUS 152 - Innovation Timing. Session 2, Quiz 1


The public's interest in Bitcoin rose sharply in 2013-14.

For example, on January 21, 2014, in a NYT article titled "Why Bitcoin Matters", Marc Andressen wrote:
Bitcoin gives us, for the first time, a way for one Internet user to transfer a unique piece of digital property to another Internet user, such that the transfer is guaranteed to be safe and secure, everyone knows that the transfer has taken place, and nobody can challenge the legitimacy of the transfer. The consequences of this breakthrough are hard to overstate.
Despite its great promise, this major breakthrough has not materialized yet. Nevertheless, the Google Trends chart above shows a noticeable uptick in Bitcoin-related interest in 2017. For example. a recent post on CloudTech by James Bourne titled "Blockchain beyond Bitcoin: Assessing the enterprise use cases" states that the technology "has serious potential to disrupt a multitude of industries." Also, Cade Metz in a January 6, 2017, Wired article titled "Bitcoin Will Never Be a Currency—It’s Something Way Weirder" reports on the general sentiment about Bitcoin, "Bitcoin is not something the average person will ever use to buy and sell stuff... It’s not something that will improve what the world has, such as money or stock. It’s something that will give the world stuff it has never had."

1. In your opinion, does Bitcoin follow the process generally described as Hype Cycle? Explain briefly.
1a. If yes, what is the current stage of the technology relative to the cycle?
1b. If no, how do you explain the 2014 peak and the significant investments VC funds put into Bitcoin-related startups?

2. Is the 2017 Bitcoin (and related technology) comeback for real? Where would you place the technology on the S-curve and Adopter Distribution chart as of today? Explain briefly.

Thursday, January 19, 2017

Stanford CSP. Business 152. Innovation Timing. Session 1, Quiz 3

Background: Sequoia Capital, one of the leading Silicon Valley venture capital firms, typically asks its prospective portfolio startups "Why Now?"

1. List at least 10 major innovations that are either happening now or about to happen within the next 3-5 years.
2. Assume that you are going to participate in one or two of those innovations.
3. Pick your role, e.g. startup founder, employee, corporate CEO/CTO, investor, scientist, student, journalist, president, non-profit, etc.
4. Given your role, select two innovation opportunities that you want to start working on now.
5. Explain "Why now?"

tags: stanford, quiz, innovation

Sunday, January 08, 2017

The Structure of Technology Revolutions

Since last summer, I've been working on a book project tentatively (and modestly!) titled "The Structure of Technology Revolutions." The purpose of the book is to show how technology enables completely new possibilities, by breaking trade-offs that are considered unbreakable.

To demonstrate the underlying structure of the innovation process, I'm using Category Theory tools (OLOGs) originally created by D.I. Spivak from MIT.

Here's a series of draft figures with an example of how the logic of innovation had worked in the technology revolution initiated by the automobile with the internal combustion engine (see below).

 Note, that the same logic can be applied to the modern autonomous vehicle. The technology is going to be successful because it creates incredible maneuverability at the "traffic" level of abstraction.

Now, back to the horses example:

Fig. 1 introduces the trade-off between Power and Maneuverability. An eight-horse carriage has a lot of power, but it's difficult to maneuver. Adding more horses will create a huge maneuverability problem. On the other hand, a horse rider is highly maneuverable but he lacks the carrying capacity of the horse carriage.

Fig. 2 introduces a logical representation of a horse carriage and maps it onto a "Conflicting Desires Diagram." That is, we show that any "designer" of a horse carriage faces a trade-off between Power and Maneuverability.

Fig. 3 sheds horse pictures and shows a logical generalization: a horse carriage is a kind of power-driven vehicle. 

Fig. 4 indicates the desired situation (the green dot on the right): We want a vehicle that has the best of both worlds, it's highly powerful and highly maneuverable.

Fig. 5 shows that the Automobile breaks the trade-off and creates a vehicle with the potential to hit the green dot. That is, we create a technology that disentangles human ability to control horses from the power. Thus, we achieve a new state that was considered impossible before.

To model the Autonomous Vehicle technology revolution we need to abstract from "a vehicle" to "traffic" and show how the new technology breaks the traffic congestion trade-off. In general, congestion trade-offs are ubiquitous in economic systems and technology revolutions break through them quite often.

Fig. 6 is a generalized diagram of how technological innovations make the impossible possible.

tags: innovation, trade-off, logic, technology, revolution